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FOREWORD

This report is a technical summary of the progress made since
September 28, 1965 by the Electrical Engineering Department, Auburn
University toward fulfillment of Contract No. NAS8-11274 granted to
Auburn Research Foundation, Auburn, Alabama. The contract was awarded
May 28, 1964 by the George C. Marshall Space Flight Center, National

Aeronautics and Space Administration, Huntsville, Alabama.
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SUMMARY

A discussion of an exact method for the determination of stability
margins in any chamnnel of a multiloop sampled data system is given.
The stabilify margins are determined for the attitude channel of the
thrust vector control system using a continuous compensation function
and a 2.5 hertz sampling rate. A design approach is suggested for
the development of digital compensation in the attitude rate channel
and examples are given for 25 hertz and 2.5 hertz system sampling
rates. The "hidden instability" problem is discussed and general
guidelines are given for the prevention of system instability. An
introduction to the analysis of multirate sampling systems is pre-

sented and several methods of analysis are investigated.
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I. INTRODUCTION

In the "Third Technical Report' considerable emphasis was placed
on approximate methods for determining an open-loop transfer function
for a multiloop sampled-data system opened between cont?nuous data
elements. This transfer function is required to facilitate.compensa-
tion of the system using standard frequency domain techniques and to
provide a method of ascertaining stability margins. Although a
procedure for obtaining an exact transfer function is not known, and
may not exist, the exact stability margins may be determined at any
point by the approach suggested in Chapter II.

Chapter III contains the results of a brief investigation into
the effect of a reduced sampling rate on the stability of the con~
figuration described by Figure 1.

The design of a digitally-compensated control system is dis-
cussed in Chapter IV. A design technique is evolved and applied to
the development of a compensation function for the case when the
sampling rate is 25 hertz and again when the system sampling rate is
2.5 hertz.

It is reasonable to expect that system performance may be enhanced
by using different rates of sampling in the rate and attitude loops.
Chapter V, which serves as an introduction into the area of multiloop
systems, summarizes the findings in this field to date.

1
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Fig.

1--Block diagram of the thrust vector control system.



II. THE EXACT METHOD FOR DETERMINATION OF STABILITY MARGINS

R. Cavin, III

For a combined analog-sampled system such as the thrust vector
control system of Figure 1, it is often necessary to obtain infor-
mation indicative of system stability margin for various branches of
the block diagram. Two of the most common and most useful measures
of system stability are gain margin and phase margin, both of which
result from frequency dependent stability criteria. In order to
obtain gain and phase margin, it is normally necessary to develop
an open loop transfer function at that point in the system where
stability margins are desired. As has been illustrated in previous
reportsl, an exact open loop transfer function cannot presently be
written for a multiloop combined analog-sampled system, opened between
continuous elements. 1In fact for the particular system of Figure 1,
an exact, sampled, open loop transfer characteristic can only be
determined by opening the system at ¢. Of course, Nyquist plots
derived from this open loop transfer characteristic can be used to:
(a) give exact phase and gain margin at ¢ and (b) determine whether

or not a praticular combination of parameters and compensation yield

a stable system.

1Phillips, C.L., et.al., '"Digital Compensation of the Thrust Vector
Control System' Second Technical Report Auburn Research Foundationm,
1 November 1964 to 28 May 1964, page 5.

3




Now the 'exact method", discussed in the STL Interim Report
4185-6005-RU000, section II-B-3-a?,takes advantage of the avaiiable
open-loop transfer characteristic at ¢ in order to determine the
gain margin at any other point in the system. For instance the gain
margin at Bc can be determined by inserting a variable gain at B,
increasing (or decreasing) this gain from unity until the open loop
Nyquist at ¢ indicates that the system is unstable. The gain margin
at B, then is simply that value of gain at which neutral stability
is effected.

Although not discussed in the referenced STL report, the phase
margin at any point in the system may be determined in much the same

manner. The phase margin at B,, for example, can be determined by

inserting a phase shift term, eje, at B, and varying © positiveiy (or
negatively) about zero until the open loop Nyquist at ¢ indicates
system instability. That value of © which causes neutral stability
is the phase margin of the system at B.. One of the biggest short-
comings of the exact method is that convergence to the stability
margin is not always systematic. A plot such as that of Figure 2-9
of the referenced STL report, where gain margin at ¢ is plotted as

a function of gain at Be> should increase the rate at which one
converges to the gain margin at B.

Another disadvantage of the "exact method" is that for each

value of gain or phase at the branch under investigation, a new

2J. Holzmon, et al, "Review of Digital Control System Design Techniques

for Missiles', STL Report 4185-6005-RU000, 16 April, 1965.
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Nyquist plot at ¢ must be generated. Further, if the s&stem, is unstable,
little information can be derived from the exact method that will

aid in the choice of suitable compensation, i.e., the open loop

frequency response at the branch under study is not available by the
"exact method". This method is therefore limited to the determina-.

tion of sfstem stability margins and, in general, is not well suited

for the synthesis problem.

It should be emphasized that the variation of gain or phase shift
at B, will alter the location of the open loop poles for the ¢ trans-
fer function and consequently may change the required number of en-
circlements of the -1 point by the ¢-Nyquist plot to give stable
operation. However, rather than attempt to extract the closed-inner
loop roots for each value of 6 or gain, a much more tractable approach
is provided by plotting a Nyquist diagram for the inner loop alone,
opened at Be- Then, if the open-loop roots of the inmer loop transfer
function are known, the effect of gain or phase shift at Bc on closed
inner-loop roots and therefore roots of the open-loop transfer func-
tion for ¢ can be directly determined. The above method can best be

illustrated by an example. Consider the simple system of Figure 2.

(1) First, construct a Nyquist diagram of inner loop with K = 1.
This is given by Figure 3. There is one unstable open loop root and
no net encirclements of -1 point; thus, there is one unstable closed-~

loop pole. 1If K is greater than 2, there are no unstable closed-




R(s + 1)

2

(s - 2)
Fig. 2--Example system.

K=1

-~
/ \\‘\
=1 w=0~y \1

-]_/2 W = o

= C(s)

Fig. 3--Inner loop Nyquist plot for the example system.



loop poles. (The Nyquist diagram need not be replotted for each K:
rather, the effect of K variation can be shown by changing the scale
of the plot.)

(2) Next construct the outer loop Nyquist diagram for the
system for different values of K. Choose K = 1. The form of the
Nyquist is given by Figure 4. There is one net encirclement of the
-1 point, and since, from Figure 3 there is one unstable open loop
root, the system is stable.

(3) Consider the outer loop Nyquist diagram for K = 3 as given
by Figure 5. Note that there are no encirclements of -1. However,
from Figure 3 there are no unstable open looé roots, thus the system
is stable.

The above example, while elementary from the standpoint of mathe-
matical complexity, does serve to emphasize the necessity of main-
taining a systematic method to keep track of the open loop roots of

the system.



Fig. 4--Outer loop Nyquist plot for the example system with
K = 1. (Inner loop closed.)

Fig. 5-~Outer loop Nyquist plot for example system with K = 3.
(Inner loop closed.)



III. STABILITY OF THE THRUST VECTOR CONTROL SYSTEM
WITH A 2.5 HERTZ SAMPLING RATE

R. Cavin, III

In order to determine the effect of reduced sampling frequency
on system stability, the system described by Figure 1 and the equa-
tions of Appendix A was investigated for a sampling frequency bf 2.5
hertz. An open loop transfer function can be developed only at ¢
when this sampling frequency is used. This limitation results be-
cause the continuous-data and fictitious sampler approximation
methods are not applicable when wg/2 is in the range of the bending
mode frequencies. (wg denotes the system sampling frequency.) Con-
sequently, it is only possible to compare the Nyquist diagrams of the
2.5 hertz system and the 25 hertz systems by using the open loop
transfer functions computed at ¢. These Nyquist diagrams were de-
veloped with the aid of the computer program of Appendix B.

Figure 6 is a Nyquist diagram for the system of Figure 1 opened
at ¢ with ag = a; = 0.5 and T = 0.4 seconds. Note that the system has
a rigid body gain margin of 8 db and a phase margin of -25 degrees.
Because of the increased attenuation of the 2.5 hertz zero-order hold
relative to the 25 hertz zero-order hold at the body bending fre-
quencies, the body bending modes do not present a serious stability
problem. Figure 7 is a Nyquist diagram for the system of Figure 1

opened at ¢ with a_=81= 0.5 and T = 0.04 seconds. For this fast
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rate system, a phase margin of -36° and a rigid body gain margin of
16 db are provided by the compensation function, PHDTCO. However,
the second bending mode has a gain margin of only +9 db.
Consequently, for the example chosen, the reduced sampling rate
diminishes rigid b&dy stability margins relative to those of the
same system with fast-rate sampling and provides increased bending
mode stability margins relative to those of the fast-rate systém.
The reduction of rigid body stability margins is due primarily to

the phase lag introduced by the zero-order hold.



IV. THE DESIGN OF A DIGITALLY COMPENSATED
THRUST VECTOR CONTROL SYSTEM

R. Cavin,ITT

Introduction

In this chapter, a method for determining digital compensation
for the thrust vector control system is developed. The desigﬁ pro-
cedure is illustrated by the development of compensation functions
for a 25 hertz and a 2.5 hertz sampling rate system. General dis-
cussions are given on the problem of hidden instability in sampled-
data control systems.

The assumptions which are pertinent to the design approach taken
in this chapter are:

1. The vehicle attitude and attitude rate will be assumed to be

synchronously sampled at the same sampling frequency.

2. When the required digital compensation transfer functions are
determined, a vehicle digital computer is assumed to be
available to implement the specified digital transfer func-
tions.

3. Design factors other.than stability, such as load relief,
are not considered.

Some Analytical Considerations

A useful characteristic of sampled data systems is that the fre-
quency response, whether determined in the z, s or w plane, is unique.

13
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Now, for high order, low-pass systems, it has been found through ex-
perience that the frequency response is most easily obtained by the
finite series expansion method in the s-plane. For a specified s=-

plane fregquency, j®», there corresponds a w-plane frequency, jr.

jr

may be related to jw as follows.

s = (0 + jw) ¢))

Tw
z=1+W=eTS=eJ (2)
1 -w

The solution of equation 2 for w is

w=(0+jr) =—sinTo | (3)

where T is the sampling period.

Therefore, if the open loop frequency response is computed, con-
ventional compensation techniques may be used to specify the w-plane
transfer function required for stability. Then by using transforma-
tion (1), the required sampled transfer characteristic can be determined.

The development of a compensation function for a digital system
follows essentially the same design procedures as that of conventional
continuous-data compensation. There are, however, certain aspects of
the design process which differ sufficiently to require special con-
sideration. Consider the system block diagram given by Figure 8.

“i Now, the transfer function for the system shown by Figure 8 is

given by equation (4) below.
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-l *
- | 4)
1- [HOAB(S)] *

[ H,AC(s)

E _*
_0;(s)-_-
Ey

Suppoée that transfer functions B(s) and C(s) have the same poles.
(This supposition is applicable for the thrust vector control system
since the $/Be and the ¢/Be transfer functions have identical denomi-
tors.) From standard referencesl, the starred transform of a function

of s, E*(s), is given by equation (5).

k
- N(E) 1
E*(s) = }; n
S DeEy 1- ellln = 8) ©)

where: Cn designates the nth root of the denominator polynomial, D(s).

k represents the total number of roots of D(s).

N(t,) = N(s) | D(¢,) = D(s)|
S S

n? n

D'(L) = dD(§) \
T reg,
* e
Therefore [HOAC(S)] and [HOAB(S)} have identical denominator poly-

nomials in e~ TS, i.e.,

1Kuo,B.C., Analysis and Synthesis of Sampled-Data Control Systems,
(Englewood Cliffs, N. J.: 1963), pp. 54-56.




Fig.
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e 3

1[

8--Block diagram of example system.

SSs

Fig. 9--Block diagram of TVC system opened in 6 channel,
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[HOAC(S)]* = EZ and [HOAB(S)]* = El (6)
Q Q

The substitution of (6) into (5) yields:

Eo*(s) - P2 (7)

E;¥(8) Q-pg

The usefulness of the result expressed by equation (7) is
11lustreted in the following peragraph which describes a method of
computing the number of unstable poles of the open'loop transfer
function of the TVC system opened in the  channel. (See Figure 9)

System transfer functions which are used throughout the
report are given by Appendix A. Note that Gj and Gy have the same
denominators. In order to determine the compensation requirements
for the system, a Nyquist diagram can be generated for (;o)*/(éi)*.
However, before the diagram can be interpreted, it is necessary to
know the number of unstable open-loop poles. The number of closed-loop,
unstable poles for the closed loop in Figure 9 can be determined by
generating a Nyquist plot for this loop alome. Suppose, as an example,
that there are two unstable poles due to the closed loop portion of
Figure 9 and, as indicated by Appendix A, there is one unstable open-
loop pole due to Gy. Because of the cancellation effect described in
the preceding paragraphs, there are only two, not three, unstable open-

loop poles for the system transfer functions opened in the $ channel.
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Compensation Design

In the following paragraphs, the method by which a compensation
function can be determined is given. In the.ensuing discussion, a
sample period of 0.04 seconds is assumed throughout,a, = ay = 0.5, and
the transfer functions of Appendix A are used. All Nyquist curves
were obtained by using a five term series expansion to represent the
starred-transform terms which arise in the open-loop transfer functions
and the computer program of Appendix C was used to determine the
curves. The following steps were taken to develop the compensation
function for the system to be inserted in the ¢ channel.

A. To determine the total number of open-loob unstable poles
for the system opened in the o channel, it is first necessary to
establish the number of open-loop unstable poles contributed by the
closed ¢ loop. This can be done by simply generating a Nyquist plot
for the ¢ loop alone. The resulting curve is shown by Figure 10.

Since the open loop transfer function for the é channel alone contains
one unstable pole, there are two unstable poles due to the closed ¢
loop in the open loop transfer function for the system opened in the

é channel. As a consequence of preceding discussions, there are theré-
fore two unstable open-loop poles for the system opened in the o
channel.

B. Next, the total Nyquist plot is generated for the system opened

in the ¢ channel. The open-loop transfer function is given by (8).
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. (Ho-Wss-Gp)*
0.L.T.F.($) = (8)

1.0 - (Hy-Wgg-G1)*

The resulting Nyquist Curve is given by Figure 11 and indicates that
the system characteristic equation has two unstable roots, hence re-
quiring compensation.

C. 1In order to attain the required two counter-clockwise en-
circlements on Figure 11, the following design procedure was used.
Note that the curve (at low frequency) exceeds zero db at approximately
92 degrees and proceeds in a counter-clockwise sense to -960, at
which point it reverses its direction and crosses the 180 degree line
at 17 db. If this 180 degree crossover point is made to occur at
less than zero db without altering the remainder of the plot appreciably,
stable operation will result. By trial and error, it was determined
that the introduction of a double order lag at a w-plane frequency of
0.07 would yield the desired 180 degree crossover at about =15 db.
However, the additional phase lag introduced by this double order lag
resulted in a condition of possible instability due to the first
bending mode. In order to circumvent this potential problem area, it
was decided to phase stabilize the first bending mode. This was
accomplished by the introduction of a second order lead term at a w-
plane frequency of (.24) with a damping ratio of 0.25. The remainder
of the bending modes are gain stabilized by this compensation function,
which for high frequencies provides an attenuation of approximately

=21 db. The complete compensation transfer function is:
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w__ 4 (2.0)(0.25W 4 1.0
G, (0) = (2% 0.24 9)

2
.+ 1
(.07 )

where

w = (p + jr)

Gain and phase plots of Gc(jr) are given by Figures 12 and 13 respec-
tively. Figure 14 is a Nyquist plot for compensated system opened

in the & channel. The open loop transfer for Figure 14 is:

*
Gc(w)'(Ho'ngf 2)
1.0 - (HO'WSS'G].)*

0.L.T.F. (éc) = (10)

From Figure 14, it may be seen that the gain margin in the ¢ channel
is ~15 db and +25 db and that phase margins of -53° and +65° are
obtained.

D. The results obtained to this point indicate that acceptable
stability margins are provided for the & channel, however, an important
question is: '"What are the stability margins provided by this compensa-
tion function if the system is opened in the ¢ channel?" Consider the
block diagram of the thrust vector control system opened in the ¢

channel shown by Figure 15.
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R be~—{pep—>—t e, |

Fig. 15 -=Block diagram of compensated thrust vector control
system opened in ¢ channel. '
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Precisely the same approach which was used in the preceding steps
is applicable here. First the number of unstable open-loop poles con-
tributed by the closed, compensated b loop mﬁst be determined. The
Nyquist plot for the é loop alone is given by Figure 16. There is one
unstable open loop pele for this loop alone and no net encirclements
of -1 point by the Nyquist diagram, thus there is a total of one
unstable open-loop roots for the compensated thrust vector control
system opened in the ¢ channel.

E. The open-loop transfer function for the system opened in the
¢ channel as shown by Figure 15 is given by equation (11).

(Ho'wss‘Gl)*(s)

0.L.T.F.(%.) = (11)
1.0 - G (W) (H_.W__.G,)*(s)

The Nyquist diagram of equation (8) is given by Figure 17. Phase
margins of -37 and 480 degrees and gain margins of -8 and -16 db are
indicated by Figure 10.

F. A third point in the system at which stability margins are
required is B,. Since wS/Z exceeds by almost a factor of four the
highest bending mode frequency, acceptably accurate results will be
obtained by using the continous approximation method. A block
diagram éf the system opened at Bc is given by Figure 18, and the open

loop transfer function is:

0.L.T.F.®,) = ‘ﬁﬁﬁ[se“ * 1] (12)
T
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Equation 12 indicates that the open-loop transfer function has
one unstable root (See Appendix A) and thus one encirclement of the
zero db point is required of the Nyquist diagram of the compensated
system. Figure 19 is the Nyquist diagram for the system opened at
Be and this figure indicates that the compensation function provides
a gain margin of 12 db and a phase margin of -25 degrees.

One potential design difficulty is revealed by Figure 19'in
that there is an inordinate amount of loop gain at a phase angle
of -150o for the third bending mode frequency. In a production design
this would justify refinement of the compensation function given by
equation 9.

Realization of the Compensation Function

The z domain transfer function may be computed from (9) by using

the transformation given by 13. This is given by equation (14).

ot ; : (13)
z 1
+ E
Gc(z) - 18.568z - 32.72z 18.152 — - o(z) (14)

4.2009x104z2 - 8.3198x10 z + 4.1193x10 Ei(z)

There are several methods by which the transfer function given by

(14) may be realized. 1In this example the '"Direct Programming' method
2

will be used. Dividing the numerator and denominator of (14) by z

yields:
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Eo(z) _ 18.568 - 32.72z°! + 18.152272
= 15
E;(z)  4.2009x10% - 8.3198x10%z71 + 4.1193x10%z~2 -

or equivalently:

-4 -1 -2
(4.2009x10% - 8.3198x10"% ™" + 4.1193x10% YEy(z) = ~
(16)
(18.568 - 32.72z° " + 18.152z"2)E, (2)

Taking the inverse z transform yields:

4.2009x10+4 eo*(t) - 8.3198x10+4 e, *(t - T) + 4.1193x104 eo*(t ~ 27T) =
(17)
18.568 e *(t) - 32.72e;%(t - T) + 18.152 e;*(t - 2T)
Solving equation (17) for eo*(t) gives:
eo*(t) = 18.568 ei*(t) . 32.72 ei*(t-T) + 18.152 " e, *(t-2T)
4.2009x10 4.2009x10 4.2009x10
(18)
8. 3198) <4. 1193)
===} e ¥(t - T) -~ (—=—=) e *(t - 2T)
<4.2009 o™ 4.2009 °
For simplicity of notation, let
18.568 32.72 _ 18.152 _ 8.3198
a=——20 b= =SS, o= 20, dos
4.2009x104 4.2009x10% 4.2009x10 4.2009
_ 4.1193

4.2009
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Thus (18) becomes

ey,*(t) = aei*(t) - bei*(t-T) + ce;*(t-2T) + deo*_(t-T)
(19)

-e eo*(t-2T)

The implementation of equation (19) is given by Figure 20.

Digital Compensation of the Thrust Vector Control System
With a Sampling Rate of 2.5 Hertz

In order to determine the effect of a reduced sampling rate on
the compensation problem, the stabilization techhique applied pre-
viously was applied to the thrust vector control system using a
sampling rate of 2.5 hertz in both the rate and attitude channels.

The Nyquist diagram for the ¢ loop alone is given by Figure 21.
From Figure 21, it is apparent that there are two unstable roots due
to the closed ¢ loop. Therefore, there are two unstable poles for
the open-loop transfer function at 6.

The Nyquist diagram for the uncompensated system opened in the &
channel is presented by Figure 22. Note the rather erratic behavior
of this curve. This results from reflected bending modes, and this
unusual behavior is particularly evident when the system is opened in
the ¢ channel, A compensation function which results in a stable
system was derived by utilizing the Bede plots of Figures 23 gnd 24
in conjunetion with trial and error compensation methods. The compensa-

tion is given by equation (20).
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Wl 2(0.5)w .1
Cor(n) = Q927 0.92 (20)
W W '
(0_5 + 1)(0.92 + 1)

From Figure 25; which is a Nyquist plot for the compensated
system opened at ¢, it is seen that Gc1(w) stabilizes the system and
provides -30 degrees of phase margin and 11.0 db of gain margin.

Next, in order to more completely evaluate the compensation func-
tion, it is necessary to determine stability margins at ¢. Figure 26
is a Nyquist diagram for the compensated ¢ loop alone. From this
diagram, it can be determined that the open-loop transfer function
for the thrust vector control sysfem opened at ¢ has one unstable pole.
The Nyquist plot for the compensated system opened in the ¢ channel is
given by Figure 27. The compensated system has -23 degrees of phase
margin and 6 db of gain margin.

The continuous approximation method which was used to derive
stability margins at Bc for ihe 25 hertz system is not applicable for
the 2.5 hertz system because some of the body-bending frequencies
arergreater in magnitude that the sampling frequency.

Although the primary objéctive of this chapter was to present a
design technique for digital compensation of the T.V.C. System it may
also be observed that the effect of reduced sampling rate is to require
an increase in the complexity of the compensation function in order to

maintain satisfactory stability margins.
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Stability Considerations for
Linear, Sampled-Data Systems

It is well known that a necessary condition for the stability
of a sampled data system is that all of the.zeroes of the characteris-
tic equation lie within the unit circle of thé z-plane. However,
the satisfaction of this condition is not sufficient to guarantee
that stable behavior will result between sampling instants.

The system response between sampling instants may be determined
by application of the modified z~-transform technique or other equiva-
lent procedures. The modified z-transform method can provide addi-
tional information on system stability which does not result from the
equations derived using the standard z-transform method. Additiomnal
data is provided if and only if at least one pair of the continuous-
data eigenvalues has an imaginary component whose magnitude is
kaIZ. wg is the sampling frequency in radians per second and k is
a counting number. The following example is an illustration of this
phenomenon.

Consider a continuous data element whose partial fraction ex-

pansion is of the form given by equation (21)

. %
K

T P EE O

s + Q4 (s-0)° + wg

) + eeeoee (21)

Taking the z-transform of G(s), we get:



K . Ks
G(z) =3 [__L__]+ ..... +j[ ! ] (22)
s + 0y (s - 0)2 + 02
Ihe z~-transform of the jth term is:
. a0Taq
[ sz ] - ZKJe sind T _ 0 (23)
(s - o) + wsz ws(z - ecT)2

Since sin w T = sin %E)T =0

As a result, the influence of the jth term of (21) on system stability

is not considered by a z-transform stability evaluation. Now the

h

modified z-transform of the jt term of (21) does not vanish and is

given by (24) below.

jm (s - 0)2 + wsz (z - 1)

Let Gij(s) represent the transfer function of the continuous data
elements connecting the output of the ith sampler to the input of

the jth

sampler. Therefore, if any of the Gij(s) has a pole whose
imaginary component is equal to kms/2, then there exists a possibility
of hidden instability. A more useful assertion is: If none of

the Gij(s) has a pole whose imaginary part coincides with kwg/2 and

if the roots of the system characteristic equation lie within the

unit circle, the system is stable.
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The preceding discussion indicates that the choice of the system
sampling frequency should be based in part on the location of the
eigenvalues of the continuous-elements of the system. 1In fact, in
the event of poorly defined or slowly varying continuous element
parameters, the above arguments lend supporf to the choice of wg
such that m§/2 is greater than the maximum expected imaginary com-

ponent of the poles of the Gij(s)'



V. ANALYSIS OF MULTIRATE SAMPLED-DATA SYSTEMS

C. L. Phillips

In this chapter various methods of analysis of multirate sampled-
data systems are discussed. First a single-loop multirate system is
analyzed using the describing-function technique. Then the two
techniques presented in STL report No. 4185-6014-RU000, dated 16 April,

3
1965, are investigated.

Analysis of a Single-Loop Multirate Sampled-Data System

To start the investigation into the methods of analysis of multi-
rate sampled-data control systems, the system of Figure 28 was chosen.
This system will be investigated using both the z-transform method and
the describing function method.

For the system of Figure 28, the transfer function is seen to be,

by the method of switch decomposition,

N-1
- [ nls
transfer function = G (2)G,(2) + }: Le N Gl(s)]x

n=1
(25)

nls
[e-ﬂ_bz(s)]

The switch decomposition method is discussed in the monthly report of

28 November 1964,0f this contract. Consider first that N = 2. Then

3Holzman, op. cit. 47
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G (2) =~ L - (26)

Ts '
3 [e 2 Gl(s)] - (1/2 f%* 1) | (28)
-Is aj/ayt
;i [e 2 Gz(s)] ="z -1 (29)
Then
transfer function = (114)T2 §; +3) o (30)
z -1

Values of the transfer function are given in Table 1 as z varies along
the upper half of the unit circle, for T = 0.04.

The transfer function of (25) can also be written as

[+2] ©0
transfer function = [‘%'Ez G (s + jmms)] L% }: G2(8+jmws)]

m==c0 m=-00
(31)
BT (s+jmog)

. E;'%(st‘]uws) 1 o N ‘
+ z[g Z € Gi(s+jm s):l I:E Z € GG2(s+jnn)s)}
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TABLE 1

RESPONSE OF SYSTEM OF FIGURE 28 for N = 2

o)

frequency-hz.

describing-function

o.2o94§;§§;9°

0.526 x 10'1zé;§§;1°
o.1332x1o‘14é;g§?
o.zo9x10'zgéglglz°
0.1225x10°2 £230.2°
0.806x10"3 L242.8°
0.635x10-3[éé§§;2°

-3
0.418x10 /{269.90

0.235x1073 /-316.8°
o.leo'%géf

0.347

0.694

1.39

3.47

4.51

5.56

6.25

7.65

10.4

12.5

response

0.209/2152:9°
0.524x10'14é;§1;9°
0.130x10-1[é;2§%§°
0.203x1072 /217, 5°
0.115x1o'zgégg§L]°
0.739x1o'34éggg3
0.556x10"3 £247.8°
0.371x10-3[§;§?:5°

/
0.161x10"> /292.5°

0.934x10"%/45°
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If the system is low-pass, then each infinite summation in (31) can be
approximated by the m = 0 term, and the describing-function techni-

que applies. Then (31) becomes

_ N-1 a7s nTs
. _1 -1 N N =
transfer function = — Gl(s)Gz(s) = -E € Gl(s) € Gz(s) =
.12 % p=1
N (32)
= G1(8)Goy(s) i
1 2
T2
For the system of Figure 28, for N = 2,
I

(33)

transfer function = 2— ( 2 ) (l-e ) -
T

Values of this transfer function are also given in Table 1, with the
s-plane frequencies which correspond to the values of z in the z-plane.
The system of Figure 28 was also investigated for the case that

N = 5. Then

nTs nTs

transfer function = G(2)G (z) + Z l: 56 (S)]zl:e 5 G2(s)] )

n=1

(34)
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and

Then, from (10),

transfer function =‘I£ [—gﬂ;t;i_J
5 (Z - 1)2

Using the describing function technique,(31) becomes

.5 5 (1
transfer function = T2 GI(S)GZ(S) = T2 <

Values of the transfer functions (39 and (40) were calculated for

values of z and corresponding values of s = jo.

given in Table 2.

~) .

These values are

(35)

(36)

(37)

(38)

(39)

(40)
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TABLE 2

RESPONSE 'OF SYSTEM OF FIGURE 28 for N = 5

Gsz!
0.211/1183.2°

0.526x10-1{éi§Z,7°
0.133x10'1/élgg°

0.205x10'2[£glg;3°
0.118x10°2 £219.8°
0.754x10'3/égggls°
o.578x10‘3/ég§§L3°
0.355x10'3/;g§9;3°
0.139x107 /62.3°

0.8x10"*/0°

frequency-hz.

0.347

0.694

1.39

3.47

4.51

5.56

6.25

7.65

10.4

12.5

describing-function -

resgonse
0.210 £183.1°

0.524x10"1 £189.3°
0.130x10" ! /£192°
-2 o
0.203x10 ~/-210.3
"2 /I‘ (o]
0.117x10 - /-218.9
0.755x1o‘3/{§28°

0.578x10"> /-234°

0.384x10">/246°

0.171x10-%£90°

0.102x10">/72°
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For the system described above, one sampler operated at 25 cps
and the other at either 50 cps or 125 cps. In either case, the des-
cribing-function approach is limited to frequéncies less than‘fs/2,
or 12.5 cps, since an input frequency of greater than fS/2 will gene-
rate a reflected fréquency at less than fs/2' It is seen from Table 1
and Table 2 that good correlation is obtained between the z-transform
approach and the describing-function approach for frequencies iess
than fs/2. It is noted that better correlation is obtained for fre-
quencies much less than fs/2 than for frequencies in the neighborhood
of £_/2.

Multirate Analysis Technique No. 2

The first method of analysis of the aforementioned STL report to
be investigated is Technique No. 2. This method is based on switch
decomposition. It will be shown that one of the results obtained in
the STL report is in error.

Technique No. 2 is a method of finding the characteristic equa-
tion of a multirate sampled-data control system. The system considered
here will have a definite relationship between the different sampling
rates, but the method used can be applied to any multirate system‘
for which the ratio of the sampling rates is the ratio of two integers.

Consider the system of Figure 29. One sampler operates at a rate
of T/2 and the other at a rate of T/3. Using the switch-decomposition

method, the system can be redrawn as shown in Figure 30. The charac-
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For the system described above, one sampler operated at 25 cps
and the other at either 50 cps or 125 cps. 1In either case, the des-
cribing-function approach is limited to frequéncies less thanvfs/2,
or 12.5 cps, since an input frequency of greater than fs/2 will gene-
rate a reflected fréquency at less than fs/2. It is seen from Table 1
and Table 2 that good correlation is obtained between the z-transform
approach and the describing-function approach for frequencies iess
than fs/2. It is noted that better correlation is obtained for fre-
quencies much less than fs/2 than for frequencies in the neighborhood
of fs/2.

Multirate Analysis Technique No. 2

The first method of analysis of the aforementioned STL report to
be investigated is Technique No. 2. This method is based on switch
decomposition. It will be shown that one of the results obtained in
the STL report is in error.

Technique No. 2 is a method of finding the characteristic equa-
tion of a multirate sampled-data control system. The system considered
here will have a definite relationship between the different sampling
rates, but the method used can be applied to any multirate system‘
for which the ratio of the sampling rates is the ratio of two integers.

Consider the system of Figure 29. One sampler operates at a rate
of T/2 and the other at a rate of T/3. Using the switch-decomposition

method, the system can be redrawn as shown in Figure 30. The charac-
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7/ ™ © /5

Fig. 29 ~-Single~loop multirate sampled-data system.

Ts
7

Fig. 30 --System equivalent to

that of Figure 29.
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teristic equation can be found by opening a loop in front of any of
the samplers, writing the open-loop transfer function, and setting
this transfer function equal to one.

Suppose that the system of Figure 30 is opened at the point

X and let X9 be the output and xl be the input. Then the

o~ *1°

following equations can be written.

Ts

y1* = G*x.* + (Ge 2 yk Xo*

1

Ts -1I8

X = (S GF x* + (e 2 )k xy 1)
2Ts 2Ts -Is

y3* = (€ 3 )% x * + (e ° Ge 2 )* xp*

and

-Is -2Is
xy* = H*y;* + (He 3 yx yz* + (he 3 )* yq*
42
s s I8 Is _21s “2)
xz* = (e_f H)* yl* + (62_ He 3 )* yz* + (€2 He 3 )* y3*

In vector-matrix notation, (41) and (42) can be expressed as, re=

spectively,

y* = Ax* (43)
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= By* | (44)

To simplify the notation, let

(i-1)Ts (j-1)Ts
2

3 -
(e Ge )k = B 5 (45)
and
i-1)Ts -(j'lsz
€ 2 He 3 ) eny (46)

g g
. 1 12 . hj1  hyp  hy3
= g g P =
21 22 h h h
21 22 23
831 832
Then (43) and (44) can be expressed as
xo*
= By* = BAx* = Cx* &7)
XZ*

where
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hy1819 + hyo8yp + hy383

hy1877 + hoo8yg + ho3e3g

Then (48) becomes

or

ko [C11(C2p = 1) - egplpn)
0 L C22 -1 1

hi1819 + hysg8op + hqag
11512 12522 13532
(48)

hy1812 + hgogos + ho3g3y

(49)

(50)

(51)

(52)
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The characteristic equation, obtained by setting the expression in

brackets in (52) equal to 1, is

(e31 = Deyy = 1) = cg9¢97 =0 | | (53)

or

1 =-cyy - cgg +cy1022 = c12¢21 =0 (54)

From (49), (54) becomes

3

3 3 | 3
1- Z hin8n1 - Z hon8n2 Z hingnl z hongn2
n=

n=1 n=1 n=1
(55)
3 3

- h h =0
Z 10502 Z 2n°n1

n-1 n=1

From (45) and (46), (55) becomes

3 =(@1Ts (o-1)Ts 3 Ts =(n-1)Ts
1- Z(He 3 yx(e 3 6y* - (c2mr 3
=1

n=1

(n-l)Ts «-Tg
(¢ 3 Ge2)yx

(continued)
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-(n-1)Ts (n-l)Ts' 3 =(@-1)Ts (n-1)Ts =Ts
Z(He 3 (@ 3 G Z (e 3 Yk ° Ge ? )*
n=1 _ n=l A
=(n-1)Ts (n-1)r1-s -Ts Is =(n=1)Ts (n-1)Ts
}E%He 3 Y* (e 3 }Z (e 2He 3 Y*(e 3 G)* =0
n=1

(56)

It will be noted that this equation is different from the characteris-
tic equation obtained from Equation (2.84) of the STL report. This

equation is

P -(m~1)Ts (n-1)Ts -(n-1)Ts (m-1)Ts
E: 55 P 4 G(s)] [e @ ¢ P H(s)] =0

m=1l n=1 (57)

where one sampling rate is T/p and the other is T/q. For the example,
p was 2 and q was 3. All of the terms of (57) are included in (56),
but terms appear in (56) which do not appear in (57).

It is seen that difficulties will occur if (56) is used to obtain
a Nyquist diagram in order to determine the gain margin and phase
margin with respect to either G or H. These difficulties arise from
the presence of terms in (56) which will result in the gain of both G
and H appearing in squared form.

The method illustrated here is also applicable to multirate
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multiloop sampled-data systems. Each sampler should be replaced by
a parallel combination of samplers, as shown in Figure 30. Then, by
opening the system in front of any samplef, én open-loop transfer func-
tion can be obtained. However, this transfer.function would not have
any physical meaning.

Multirate Analysis Technique No. 1

The multirate analysis Technique No. 1 of the aforementiéned
STL report was investigated, and the final result, given by equation
(2.73) of the report, was found to be correct. However, some of the
steps in the analysis are not clear, and these steps are discussed
below.

To be mathematically correct, in equation (2.45) and (2.46)

the factor 5(n~kN) should be replaced by

nte
J/‘ 8 (n-kN)dn e >0

n-¢

since this integral is equal to unity for n = kN, and is zero for all
other values of n.

The motivation behind the substitution

N .2;mm Nta-1  .92xrn
1 J'sr- 1 J-;;—-
x(n) = E ze == € (58)
N
m=1 r=Q
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obtained from (2.51) and (2.53), is obscure and the substitution seems

to be unnecessary. The summation in the above equation, from ¢ to

(N+a-1), is carried through the derivation intact. Then, in equation
(2.69), this summation is replaced with a summation from 1 to N,

which is the original summation in (58).

It is seen, from (2.74), that the same problems arise in using

Technique No. 1 as in using Technique No. 2. Using both techniques,

the gain factor K cannot be factored from the open loop transfer

functions, and thus gain and phase margins cannot be obtained in a

simple manner from a Nyquist diagram of the system.



VI. CONCLUSIONS:

In Chapter II, a method was discussed by which one can determine
the exact gain and phase margin in any channel of a multiloop, single
rate, sampled-data system. This "exact method" was found to be rather
unwieldy in application. Further, it does not enable one to compute
an open-loop frequency response for the system opened between con-
tinuous elements and is therefore of little value in the synthesis of
a compensation function.

The influence of a reduced sampling rate on the configuration
described by Figure 1 was investigated in Chapter III. The system
was found to be siablc for a sampling rate of 2.5 hertz although the
rigid body stability margins are decreased relative to the same
margins for the 25 hertz rate. It was also noted that the reduced
sampling rate suppressed appreciably the bending mode resonances and
thereby minimized the effect of these modes on stability.

A technique was presented in Chapter IV which enables the sys-
tematic development and evaluation of a compensation function for the
thrust vector control system with synchronous, equal rate, sampling
in each of the attitude and rate channels. The technique was illu-
strated by example with the development of compensation functions for each
of the 2.5 ‘hertz and 25 hertz sampling rates. The problem of "hidden in-
stability" was also discussed and a method of assuring that the

system is stable between sampling instants was presented.

63
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In Chapter V, the describing function method was applied to a
single loop,multi-rate system. Also a study was conducted of two
technlques for the analysis of multl-loop multl-rate sampllng systems.

These technlques were described in STL report no. 4185-6014-RU00,

dated 16 April, 1965



APPENDIX A

The . following is a list of the transfer fﬁnctions used in the

body of the report.

GIR < ;0.94068468
s2 - 0.02972784
C1EL = 0.65323138 x 10~2(s? + 498.59362)
s2 + 0.64905305 x 10~ 1s + 42.126986
c1py - =0:40378959 x 107%(s? + 485.48033)
<2 4+ 0.1201345s + 144.32299
Glp3 = -0.53896739 x 10”%(s? + 470.36052)
s2 + 0.18378317s + 337.76255
-2,.2
1 - 0-58368238 x 1072(s? + 469.03256)

s + 0.22481237s + 505.40603

Gy = s(GIR + G1Bl + G1B2 + G1B3 + G1B4) = s G1

625.0
Wss = 2
s + 25.0s + 625.0
-(T)s
goL = - e

65
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[ 0.33747 x 1038 + 0.57852 x 107787
0.31188 x 10109 4 0.30536 x 10-7s8

-5 6

- -3 4
0.32159 x 10 "s  + 0.38442 x 10 435 + 0.727818 x 10 3s

0.13131 x 10-5s7 + 0.33399 x 10~%s® + 0.59308 x 10~3s>

0.0069727s3 + 0.55606s82 + 0.38360s + 1.0

0-006892454 + 0.056518s3 + 0.30188s2 + 0.87623s + 1.0
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